題目: UVa - 820 - Internet Bandwidth

題目說明

求 S 到 T 的最大流量為多少。網路是雙向連接的,但共用頻寬,例如 A B 10,則 A 到 B 的流量 + B 到 A 的流量要小於等於 10。另外這題給測資的方式會有可能給你很多組 A B Xi,所以 A 到 B 的頻寬要把 Xi 全部加起來,例如底下例子 1 ~ 2 的頻寬為 30。
2
1 2 2
1 2 10
1 2 20

Programming學習筆記: UVa 820 Network Bandwidth

解題思路

最大流基本題,可使用 Edmonds-Karp 求解,也可使用 Dinic。

參考解法

Edmonds-Karp:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <bits/stdc++.h>

using namespace std;

#define FOR(i, a, b) for (int i = a; i < b; ++i)
#define CLR(c) memset(c, 0, sizeof(c))

static auto __ = []
{
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
return 0;
}();

template <typename T>
T QPOP(queue<T>& q)
{
T tmp = q.front();
q.pop();
return tmp;
}

// reference: https://ppt.cc/fv1Gvx

const int INF = (int)1e9;
const int MXN = 101;

int f[MXN][MXN];
int c[MXN][MXN];
int p[MXN];
bool vis[MXN];

int N, S, T, C; // S: Source, T: Sink

void init()
{
CLR(f);
CLR(c);
}

void read()
{
int u, v, w;
cin >> S >> T >> C;
while (C--)
{
cin >> u >> v >> w;
c[u][v] += w;
c[v][u] += w;
}
}

int augment(int u, int v, int bottleNeck)
{
if (v == S) return bottleNeck;
bottleNeck = augment(p[u], u, min(c[u][v] - f[u][v], bottleNeck));
f[u][v] += bottleNeck;
f[v][u] -= bottleNeck;
return bottleNeck;
}

// Edmonds-Karp
int maxiumFlow()
{
int mf = 0;

while (true)
{
CLR(vis);

queue<int> q;
q.push(S);
vis[S] = true;

while (!q.empty() && !vis[T])
{
int u = QPOP(q);

FOR(v, 1, N + 1)
{
if (vis[v] || f[u][v] >= c[u][v]) continue;

q.push(v);
vis[v] = true;
p[v] = u;
}
}

if (!vis[T]) break; // no path
mf += augment(p[T], T, INF);
}

return mf;
}

void solve()
{
static int C = 0;
cout << "Network " << ++C << '\n';
cout << "The bandwidth is " << maxiumFlow() << ".\n\n";
}

int main()
{
while (cin >> N && N)
{
init();
read();
solve();
}
}

上面的作法將 Flow 跟 Capacity 分開,主要是希望可以保留 Capacity,若沒此需求也可以直接將一開始的 Capacity 當作 Residual Network 來做,可以省去一個陣列。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include <bits/stdc++.h>

using namespace std;

#define FOR(i, a, b) for (int i = a; i < b; ++i)
#define CLR(c) memset(c, 0, sizeof(c))

static auto __ = []
{
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
return 0;
}();

template <typename T>
T QPOP(queue<T>& q)
{
T tmp = q.front();
q.pop();
return tmp;
}

// reference: https://ppt.cc/fv1Gvx

const int INF = (int)1e9;
const int MXN = 101;

int rn[MXN][MXN];
int p[MXN];
bool vis[MXN];

int N, S, T, C; // S: Source, T: Sink

void init()
{
CLR(rn);
}

void read()
{
int u, v, w;
cin >> S >> T >> C;
while (C--)
{
cin >> u >> v >> w;
rn[u][v] += w;
rn[v][u] += w;
}
}

int augment(int u, int v, int bottleNeck)
{
if (v == S) return bottleNeck;
bottleNeck = augment(p[u], u, min(rn[u][v], bottleNeck));
rn[u][v] -= bottleNeck;
rn[v][u] += bottleNeck;
return bottleNeck;
}

// Edmonds-Karp
int maxiumFlow()
{
int mf = 0;

while (true)
{
CLR(vis);

queue<int> q;
q.push(S);
vis[S] = true;

while (!q.empty() && !vis[T])
{
int u = QPOP(q);

FOR(v, 1, N + 1)
{
if (vis[v] || !rn[u][v]) continue;

q.push(v);
vis[v] = true;
p[v] = u;
}
}

if (!vis[T]) break; // no path
mf += augment(p[T], T, INF);
}

return mf;
}

void solve()
{
static int C = 0;
cout << "Network " << ++C << '\n';
cout << "The bandwidth is " << maxiumFlow() << ".\n\n";
}

int main()
{
while (cin >> N && N)
{
init();
read();
solve();
}
}

Dinic:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include <bits/stdc++.h>

using namespace std;

#define FOR(i, a, b) for (int i = a; i < b; ++i)
#define CLR(c) memset(c, 0, sizeof(c))

static auto __ = []
{
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
return 0;
}();

template <typename T>
T QPOP(queue<T>& q)
{
T tmp = q.front();
q.pop();
return tmp;
}

// reference: https://ppt.cc/fXrOUx

const int INF = (int)1e9;
const int MXN = 101;

int rn[MXN][MXN];
int l[MXN];

int N, S, T, C; // S: Source, T: Sink

void init()
{
CLR(rn);
}

void read()
{
int u, v, w;
cin >> S >> T >> C;
while (C--)
{
cin >> u >> v >> w;
rn[u][v] += w;
rn[v][u] += w;
}
}

bool dinicBFS()
{
CLR(l);

queue<int> q;
q.push(S);
l[S] = 1;

while (!q.empty())
{
int u = QPOP(q);

FOR(v, 1, N + 1)
{
if (l[v] || !rn[u][v]) continue;
l[v] = l[u] + 1;
q.push(v);
}
}

return l[T];
}

int dinicDFS(int u, int cp)
{
if (u == T) return cp;

int tmp = cp;

for (int v = 1; v <= N && tmp; ++v)
{
if (l[v] != l[u] + 1 || !rn[u][v]) continue;

int bottleNeck = dinicDFS(v, min(rn[u][v], tmp));
rn[u][v] -= bottleNeck;
rn[v][u] += bottleNeck;
tmp -= bottleNeck;
}

return cp - tmp;
}

int maxiumFlow()
{
int mf = 0;
while (dinicBFS()) mf += dinicDFS(S, INF);
return mf;
}

void solve()
{
static int C = 0;
cout << "Network " << ++C << '\n';
cout << "The bandwidth is " << maxiumFlow() << ".\n\n";
}

int main()
{
while (cin >> N && N)
{
init();
read();
solve();
}
}

參考資料

Programming學習筆記: UVa 820 Network Bandwidth
UVa 820 - Internet Bandwidth | NaiveRed’s Blog
Dinic算法详解及实现 - 0giant - 博客园